
Dr. Marques Sophie Linear algebra II SpringSemester 2016
Office 519 marques@cims.nyu.edu

Problem Set # 9

Justify all your answers completely (Or with a proof or with a counter example)
unless mentioned differently. No step should be a mystery or bring a question. The grader
cannot be expected to work his way through a sprawling mess of identities presented without
a coherent narrative through line. If he can’t make sense of it in finite time you could lose
serious points. Coherent, readable exposition of your work is half the job in mathematics.
You will loose serious points if your exposition is messy, incomplete, uses mathematical
symbols not adapted...

Exercise 1:
Find the Jordan canonical form for LA : C3 → C3 with

A =

 11 −4 −5
21 −8 −4
3 −1 0


Solution:

pA(x) = det(A− xI) = (−1)[(x− 11)(x+ 8) + 48− 105] = (−1)(x3 − 3x2 + 7x+ 11)

We can find one root by trial and error:

pA(−1) = (−1)[−1− 3− 7 + 11] = 0

So λ1 = −1 is an eigenvalue of algebraic multiplicity 1. Since dim(Mλ1) = (alg mult) ≥
(geom mult) = dim(Eλ1), we get Mλ1 = Eλ1 .
Long division of pA(x) by x− λ1 = x+ 1 yields pA(x) = (−1)(x+ 1)(x2− 4x+ 11). By
quadratic formula the 2nd has roots

λ± =
4±
√

42 − 44

2
=

4±
√
−28

2
= 2± i

√
7

(conjugate complex roots). The eigenvalues in C are distinct, without further calcula-
tion, this implies LA : C3 → C3 is diagonalizable, and there is a C-basis for C3 such
that [LA] has the form

[LA]X ,X =

 −1 0 0

0 2 + i
√

7 0

0 0 2− i
√

7
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Note: This question did not ask you to find a basis in C3 that diagonalizes LA.

Exercise 2: Let V be the subspace R − Span{1, t, t2, et, tet} in the infinite dimen-
sional vector space C∞(R) = all infinitely differentiable functions f : R → R. Let
T = d

dt
.

1. Prove that this linear operator T : C∞ → C∞ leaves V invariant and can be
viewed as a map T : V → V .

2. Find the Jordan canonical form of T : V → V and find a basis for each generalized
eigenspace.

Solution: Let e1 = 1, e2 = t, e3 = t2, e4 = et, e5 = tet. With respect to this basis X ,
[T ]X has the form:

A = [T ]X =


0 1 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1


since

T (e1) = 0, T (e2) = e1, T (e3) = 2e2, T (e4) = e4, T (e5) = e4 + e5

The 2 × 2 block on lower right is already an elementary nilpotent matrix describing
the action of T on the 2-dimensional invariant subspace M2 = R − Span{e4, e5} and
M1 = R−span{e1, e2, e3} is also invariant and V = M1⊕M2. It would suffice to analyze
the structure of T |M1 : M1 →M1, but we shall calculate the genralized eigenspaces of T
directly without taking advantage of this short cut, in order to illustrate computational
techniques.
Spectrum: The characteristic polynomial is pA(x) = det(A − xI) = −x3(x − 1)2, so
spC(A) = {0, 1} with

dim(Mλ) = (alg mult of λ as a root of pA) =

{
3 if λ = 0
2 if λ = 1

Generalized eigenspaces.
Case 1: λ = 0 where

A− λI =


0 1 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1

→


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1


(correspond to a consistent system so solution exist.) From the echelon form, we see
that x1 is a free variable and back solving yields

x5 = 0, x4 = −x5 = 0, x3 = x2 = 0
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Thus, K1 = Ce1 = Eλ=0; geometric multiplicity of λ = 1 is 1. Next compute K2 =
ker(A− λ)2 = ker(A2). Here,

A2 =


0 0 2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 2
0 0 0 0 1



A2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 3
0 0 0 0 1



An =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 n
0 0 0 0 1


Backsolving shows that

{0} ( K1 ( K2 = {x : x3 = x4 = x5} = C− Span{e1, e2}
( K3 = {x : x4 = x5 = 0} = C− Span{e1, e2, e3}
= K4 = · · · = Mλ=0 = K∞(A− λ) for λ = 0

(R∞ = C− Span{e4, e5}. )
Now, Mλ=0 is K∞(A) = C − Span{e1, · · · , e3}. To get a decomposition into cyclic
subspaces we follow the algorithm of the notes applied to T |K∞ = N (it is nilpotent of
degree 3, N : K∞K∞)

{0} ( K1(N) = C−Span{e1} ( K2(N) = C−Span{e1, e2} ( K3(N) = C−Span{e1, e2, e3} = Mλ=0

Step 1: Pick basis vectors for Mλ=0 = K3(N) mod K2(N). Since the quotient K3/K2

is 2-dimensional and f
(1)
1 = e3 ∈ K3 ∼ K2, e3 does the job. Now compute

f
(2)
1 = T (e3) = 2e2, f

(3)
1 = T 2(e3) = T (2e2) = 2e1

(with f
(4)
1 = T 3(e3) = 0).

Step 2: Augment T (e3) ∈ K2(N) is necessary to get a basis for K2(N) mod K1(N)
since dim(K2/K1) = 1, the vector T (e3) is already a basis for K2 mod K1. So, no
augmentation is necessary to get a basis for K1(N)/{0} = 14. But dim(K1(N)) = 1,
so T 2(e3) is already a basis and no augmentation is necessary.
We now have a basis for all of Mλ=0. The vector e3 is already a cyclic vector for the
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action of T on Mλ=0 and {e3, T (e3) = 2e2, T
2(e3) = 2e1} = X1 is a basis for Mλ=0 that

puts [T |Mλ=0
]X into elementary nilpotent forms,

[T |Mλ=0
]X1 =

 0 1 0
0 0 1
0 0 0


Case 2: Mλ=1 We can find a basis X2 that puts B = [T |Mλ=1

]X2 in Jordan form.
Obviously X2 = {e4, e5} does the job. Then

B =

(
1 1
0 1

)

(B − λI) =

(
0 1
0 0

)
{0} ( K1 = ker(B − λI) = Eλ=1 is C− Span{e5}

( K2 = ker(B − λI)2 = ker

(
0 1
0 0

)2

= C− Span{e4, e5}

is all of Mλ=1. So K2 = K∞ = Mλ=1. Note that (geom.mult λ = 1) = 1 = dim(Eλ=1) <
(alg mult λ = 1) = dim(Mλ−1) = 2. So, T |Mλ=1

is not diagonalizable.
The new basis

{f (1)
1 , f

(2)
1 , f

(3)
1 , f

(1)
2 , f

(2)
2 } = {e3, T (e3), T

2(e3); e4, e5} = Y

yields to a matrix

[T ]Y =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1

 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

+


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 = D +N

where D is diagonal and N is nilpotent and they commute.

Exercise 3: Find a basis Y that puts LA : C3 → C3 with

A =

 −3 3 −2
−7 6 −3
1 −1 2


into Jordan canonical form, and find the transition matrix Q such that the Jordan form

[LA]Y = QAQ−1 = Q[LA]XQ
−1,
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for X = {e1, e2, e3} the standard basis in C3.

Solution: The characteristic polynomial is

pA(λ) = det(A− λI)
= (−1){[(λ+ 3)(λ− 6)(λ− 2) + 9 + 14]− [3(λ+ 3)− 2(λ− 6)− 21(λ− 2)]}
= (−1)[λ3 − 5λ2 + 8λ− 4]

Trial and error yields a root λ = 1, pA(1) = (−1)[1− 5 + 8− 4] = 0, and then by long
division

pA(λ) = (−1)[(λ− 1)(λ2 − 4λ+ 4)] = (−1)(λ− 1)(λ− 2)2

Thus Sp(LA) = {1, 2} with (alg multiplicities) =

{
1 if λ = 1
2 ifλ = 2

. Hence Mλ=1 =

Eλ=1.
To compute Eλ=1, solve (A− I)x = 0. Here,

A− I =

 −4 3 −2
−7 5 −3
1 −1 1

→
 1 −1 1

0 −1 2
0 −2 4

→
 1 −1 1

0 1 −2
0 0 0


So x3 is a free variable, x2 = 2x3, x1 = x2 − x3 = 2x3 − x3 = x3. Thus,

Eλ=1 = {

 x3
2x3
x3

 : x3 ∈ R} = R ·

 1
2
1


(one dimensional as expected since 0 < |Eλ=1| ≤ |Mλ=1| = 1.) Take basis vector

f
(1)
1 =

 1
2
1

 for Mλ=1.

Case 2: Mλ=2 Step 1 Find K1 = ker(A− 2I) = Eλ=2 by solving (A− 2I)x = 0. Here

(A− 2I) =

 −5 3 −2
−7 4 −3
1 −1 0

→
 1 −1 0

0 −2 −2
0 −3 −3

→
 1 −1 0

0 1 1
0 0 0


x3 is a free variable, x2 = −x3, x1 = x2 = −x3.

So, K1 = Eλ=2 = {

 −x3−x3
x3

 : x3 ∈ R} = R ·

 1
1
−1

 is 1-dimensional with basis

vector

 1
1
−1

.

Next compute K2 = ker(A− 2I)2, K3 = ker(A− 2I)3... We have

(A− I)2 =

 −5 3 −2
−7 4 −3
1 −1 0

2

=

 2 −1 1
4 −2 −2
2 −1 1
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Solving (A− 2I)2x = 0, row operation yield

(A− I)2 =

 2 −1 1
4 −2 −2
2 −1 1

→
 2 −1 1

0 0 0
0 0 0

→
 1 −1/2 1/2

0 0 0
0 0 0


There are two free variables are x2, x3: x1 = 1/2x2 − x3,

K2 = ker(A− 2I)2 = {

 1/2x2 − 1/2x3
x2
x3

 : x1, x3 ∈ R} = R

 1/2
1/2
0

⊕ R

 −1
0
1


and dim(K2) = 2.
We could directly compute K3 = ker(A− 2I)3, but notice that

{0} ( K1 ( K2 ( K3 ⊆ K3 ⊆Mλ=2

However, we know in advance that C3 = Mλ=1 ⊕Mλ=2. So,

|Mλ=2| = 3− 1 = 2 = |K2|

Therefore without further calculation, we see that

{0} = K0 ( K1 (Mλ=2 = K∞(A− 2I) = K2(A− 2I)

In particular,

Mλ=2 = R

 1
2
0

⊕ R

 1
0
−1


To find a Jordan basis in Mλ=2, we first pick basis vectors for K2 mod K1; since

dim(K2/K1) = 1, any vector v ∈Mλ=2 ∼ K1 will do. Let us take f
(1)
2 =

 1
2
0

, which

obviously is not a scalar multiple of (1, 1,−1) (such that R − (1, 1,−1) = K1]. Then

f
(2)
2 = T (f

(1)
1 ) = (A− 2I)

 1
2
0

 =

 1
1
−1

 is in K1. The algorithm requires that we

augment this with additional vectors in K1 to get a basis a basis for K1 mod K0 = {0}.

But since dim(K1/K0) = 1, no augmentation is necessary f
(1)
1 =

 1
2
0

 is a cyclic

vector for he action of LA in Mλ=2 = K2 with respect to the basis {f (1)
1 ; f

(1)
2 , f

(2)
2 =

T (f
(1)
2 } = Y . The operator LA : C3 → C3 has matrix

B =

 1 0 0
0 2 1
0 0 2

 = D +N

6



with D =

 1 0 0
0 2 0
0 0 2

 and N =

 0 0 0
0 0 1
0 0 0

.

To find the basis transformation Q such that Q−1AQ = B, we note that B = [LA]Y with
respect to the basis determined above while A = [LA]X with respect to the standard
basis {e1, e2, e3} in C3. Now recall that

[LA]YY = [id]YX [LA]XX [id]XY = Q−1AQ

where Q = [id][id]XY .
To find Q, note that

[id]XYf
(1)
1 = e1 + 2e2 + e3
f
(1)
2 = e1 + 2e2 + e3
f
(2)
2 = e1 + e2 − e3

⇒ Q = [id]XY =

 1 1 1
2 2 1
1 0 −1


from which we may compute Q−1 by Cramer’s rule.

Exercise 4: Find a Jordan bases that put T = d
dt

into a Jordan canonical form on
V = R− Span{et, tet, t2et, e2t}.

Solution: First check that V is T -invariant (it is). Letting X = {e1 = et, e2 =
tet, e3 = t2et, e4 = e2t}, we find that

A = [T ]X =


1 1 0 0
0 1 2 0
0 0 1 0
0 0 0 2


since T (et) = et = e1, T (e2) = e1 + e2, T (e3) = 2e2 + e3; T (e4) = 2e4. (an eigenspace
for λ = 2) Obviously, pA(x) = det(A− xI) = (x− 1)3(x− 2) and spC(T ) = {1, 2}.
Since |Mλ=2| = (alg ·mult of λ = 2) = 1 and |Eλ=2| ≥ 1, we have Mλ=2 = Eλ=2 and

we know a basis vector by inspection, namely f
(1)
2 = e5.

To determine Mλ=1 = K∞(T − I), we compute successive kernels Ki = ker(T − I)i.
For K1 solve (A− I)x = 0. By row operations

A− I =


0 1 0 0
0 0 2 0
0 0 0 0
0 0 0 1

→


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
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with x1 free variable and x4 = x3 = x2 = 0 so K1 = Eλ=1 = Re1. For K2, compute

(A− I)2 =


0 0 2 0
0 0 0 0
0 0 0 0
0 0 0 1


Now, x4 = 0, 2x3 = 0, so x4 = x3 = 0 and K1 ( K2 = Re1 ⊕ Re2.

Exercise 5:
Let V be a vector space over the real numbers. Define its complexification as VC =
V + iV , and we define on VC two operations, for any x = x1 + ix2, y = y1 + iy2 ∈ VC
and λ = a+ ib ∈ C,{

x+ y = (x1 + y1) + i(x2 + y2) (addition)
λx = (ax1 − bx2) + i(ax2 + bx1) (scalar multiplication)

Prove that VC is a vector space over C.

To compute K3 (and see that · · · ( K2 ( Mλ=1 = K∞ = K3), we solve (A− I)3x = 0.
Here

(A− I)3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


So K3 = R − Span{e1, e2, e3} has dimension 3 and must therefore be equal to Mλ=1,
which is 3-dimensional.
Now decompose Mλ=1 into cyclic subspaces under the action of (T − I)i. Note that
Ki/Ki−1| = 1 at every step, so any vector vi ∈ Ki ∼ Ki−1 is a basis for Ki (mod Ki−1).
Step 1: Find a basis for Mλ=1 = K3 mod K2. A suitable vector is any v ∈ Mλ ∼ K2;
we take f

(1)
1 = e3; then f

(2)
1 = (A − I)f

(1)
1 = (A − I)e3 = 2e2; f

(3)
1 = (A − I)2f

(1)
1 =

(A − I)(2e2) = 2e1; (A − I)3e3 = 0. These vectors are independent and hence are a
basis for Mλ=1 with |Mλ=1| = 3. Thus e3 is a cyclic vector for (A− I) on Mλ=1.

Taking the basis Y = {f (1)
1 = e3, f

(2)
1 = 2e2, f

(3)
1 = 2e1; f

(1)
2 = e4}, we get Jordan

canonical form

[T ]YY =


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1


Exercise 6:
Let V be a complex finite dimensional inner product space, T : V → V a linear opera-
tor, and X a basis (not necessarily orthonormal) such that A = [T ]X is upper triangular.
(Such basis exist, as in the Jordan canonical form.) Let N be the ON basis obtained
from X via the Gram-Schmidt process. Prove that [T ]N is again upper triangular.
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Solution: We have F = C, T : V → V linear, X = {ei} a basis such that

[T ]X =


λ1 ∗
0 ·
0 0 ·
0 0 0 λn


(Schur form) Let Y = {fi} be the ON basis obtained by Gram-Schmidt.
Then

f1 = c1e1
f2 = c2e2 − c21e1
f3 = c3e3 + c32e2 + c31e1
·
·
fn = cnen +

∑n−1
j=1 cnjej

Then [id]X ,Y =


c1 ∗
0 ·
0 0 ·
0 0 0 cn

 and [id]Y,X = [id]−1Y,X =


1/c1 ∗

0 ·
0 0 ·
0 0 0 1/cn

 and

[T ]Y,Y = [id]Y,X [T ]X ,X [id]X ,Y

=


c1 ∗
0 ·
0 0 ·
0 0 0 cn




λ1 ∗
0 ·
0 0 ·
0 0 0 λn




1/c1 ∗
0 ·
0 0 ·
0 0 0 1/cn


=


λ1 ∗
0 ·
0 0 ·
0 0 0 λn


is again upper triangular, as claimed.

Exercise 7:
Let T : V → V be diagonalizable over F, with spectral decomposition

T =
∑

λ∈SpF(T )

λPλ

where Pλ is the projection onto Eλ(T ) along ⊕Eµ(T ). Explain why, for each projection
Pλ there is a polynomial f ∈ F[x], not necessarily unique such that Pλ is a linear com-
bination of powers f(T ) =

∑
j=0 cjT

j.

Solution: By Lagrange Interpolation, there is fi =
∑

n=0 c
(1)
n xn such that fi(λj) = 0 if

j 6= i and f(λi) = 1. Then fi(T ) = fi(
∑r

k=1 λjpλk) =
∑
fi(λk)pλk = 1 · pλi as desired.
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(Note that fi is not unique).

Exercise 8:
We say that T : V → V a linear operator on a finite dimensional vector space V is
strictly positive definite (we write T > 0), if T ∗ = T and (T (v), v) > 0, for all v 6= 0.
(so all eigenvalues are real and λ > 0). These operators are always invertible.
If T = T ∗ on a complex inner product space V , prove that

1. eT =
∑∞

k=0
1
k!
T k is self adjoint.

2. eT is strictly positive definite.

3. the map Exp : T → eT is one-to-one from the space of self adjoint operators
H = {T : T = T ∗} into the space P of strictly positive definite operators.

4. Exp : H → P is surjective (hence a bijection).

Thus every B ∈ P has a unique self-adjoint logarithm A = log(B) such that eA = B.
Hint: In 4., consider how you might recover the spectral decomposition of a self-adjoint
operator T if you know the spectral decomposition of eT .
Solution: If A∗ = A then eA ≥ 0 because A =

∑
λipi, pi = projection onto eigenspace

Eλi in V = ⊕ri=1Eλi ; eigenvalues λi are all real. If v =
∑
vi, vi ∈ Eλi , there

eAv =
∞∑
n=0

An

n!
=
∞∑
n=0

(
r∑
i=1

λni
n!
pi(v)) =

∞∑
n=0

(
r∑
i=1

λni
n!
vi) =

∑
i

eλivi

Hence, if v =
∑
viei 6= 0, we have

(eAv, v) = (
∑
i

eλivi, vi) =
∑
i

eλi ||vi|||2 > 0.

Since eλi > 0 for all i. It also follows that eA|Eλi (A) = eλiI. Since the λi are real,

eλi = eλj if and only if λi = λj; so we see that sp(eA) = {ek : λ ∈ sp(A)} and that
Eλ(A) = Eeλ(eA) as subspaces in V . In particular, A and in particular eA have the
same spectral projection and A =

∑
i λipi, e

A =
∑

i e
λipi. Thus, if X,X ′ ∈ H, we

have eX = eX
′

then sp(X) = log(sp(eX)) = log(sp(eX
′
)) = sp(X ′) and the spectral

projection for X (for eigenvalue λ) is equal to the spectral projections for eX = eX
′

(for
eigenvalue eλ = eλ

′
) which is equal the spectral projection for X ′ (for eigenvalue λ′).

If B = eX = eX
′
, we have X = X ′ =

∑
µ∈sp(B) log(µ)pEµ(B) and Eλ=log(µ)(X) =

Eλ=log(µ)(X
′) = Eµ(B), for all µ ∈ sp(B). Thus Exp is one to one on the vector sub-

space of self adjoint H = H∗ in M(n,C).
If A > 0 its spectral decomposition is

∑
λ∈sp(A) λpEλ , and each λ ∈ sp(A) must be λ > 0

(If v 6= 0 is in Eλ(A) then λ||v||2 = (Av, v) > 0.) Then H =
∑

λ∈sp(A) log(λ), pEλ is

well-defined and self-adjoint, and eH = A.
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